
1. Introduction

In C++, friend functions provide a way to allow non-member functions to access the private and
protected members of a class.
Normally, private members of a class cannot be accessed outside the class. However, by using the friend
keyword, a function or another class can be given special permission.

Friend functions are an important feature of Object-Oriented Programming (OOP) and are mainly used
when two or more classes need to share data closely.

2. Need for Friend Function

The main reason for using friend functions is to overcome data hiding limitations in certain situations.

Why friend functions are required:

 To access private data of a class
 To allow external functions to work with class data
 To simplify operator overloading
 To enable data sharing between multiple classes

3. Definition of Friend Function

A friend function is:

 Not a member of a class
 Declared using the keyword friend inside the class
 Allowed to access private and protected members
 Called like a normal function, not using objects

4. Syntax of Friend Function

class ClassName {
 private:
 int x;
 public:
 friend void show(ClassName obj);
};

The function definition is written outside the class:

void show(ClassName obj) {
 cout << obj.x;
}

5. Characteristics of Friend Function

 It is not a class member
 It does not use this pointer
 It can access private and protected data
 It is declared inside the class but defined outside
 It can be a global function or member of another class

6. Example of Friend Function

#include <iostream>
using namespace std;

class Sample {
private:
 int num;
public:
 Sample(int n) {
 num = n;
 }
 friend void display(Sample s);
};

void display(Sample s) {
 cout << "Number: " << s.num;
}

int main() {
 Sample obj(10);
 display(obj);
 return 0;
}

Output
Number: 10

7. Friend Function and Encapsulation

Encapsulation means wrapping data and functions together and restricting direct access to data.

Friend functions:

 Break strict encapsulation
 Are used only when necessary
 Must be carefully implemented

They should be used sparingly to maintain data security.

8. Friend Function vs Member Function

Feature Friend Function Member Function

Belongs to class No Yes

Access private data Yes Yes

Uses object to call No Yes

Uses this pointer No Yes

Declared using friend keyword normal syntax

9. Friend Function and Multiple Classes

A friend function can be declared in more than one class, allowing it to access private data of multiple
classes.

Example
class A {
 int x;
public:
 A(int a) { x = a; }
 friend void add(A, B);
};

class B {
 int y;
public:
 B(int b) { y = b; }
 friend void add(A, B);
};

void add(A obj1, B obj2) {
 cout << obj1.x + obj2.y;
}

10. Friend Class

A friend class is a class whose all member functions can access the private and protected members of
another class.

Syntax
class B;

class A {
 friend class B;
};

11. Example of Friend Class

class A {
private:
 int x;
public:
 A() { x = 10; }
 friend class B;
};

class B {
public:
 void show(A obj) {
 cout << obj.x;
 }
};

12. Advantages of Friend Function

 Allows access to private data when required
 Simplifies operator overloading
 Useful for closely related classes
 Improves flexibility of program design

13. Disadvantages of Friend Function

 Breaks data hiding
 Reduces security
 Increases dependency between classes
 Makes code harder to maintain if overused

14. Friend Function and Operator Overloading

Friend functions are commonly used in operator overloading, especially when the left operand is not an
object.

Example
class Sample {
 int x;

public:
 Sample(int a) { x = a; }
 friend Sample operator +(Sample, Sample);
};

Sample operator +(Sample a, Sample b) {
 return Sample(a.x + b.x);
}

15. Rules for Friend Function

1. Declared using friend keyword
2. Not affected by access specifiers
3. Cannot be inherited
4. Called like normal function
5. Can be declared in any section of class

16. Common Mistakes

 Excessive use of friend functions
 Assuming friend functions are class members
 Using friend functions when not required
 Breaking encapsulation unnecessarily

17. When to Use Friend Function

 When two classes share common data
 For operator overloading
 For performance optimization in some cases
 When tight coupling is acceptable

18. Best Practices

 Use friend functions only when necessary
 Prefer member functions when possible
 Keep friend functions minimal
 Document friend usage clearly

19. Applications of Friend Function

 Mathematical operations
 Operator overloading
 System-level programming
 Closely related class operations

20. Conclusion

Friend functions are a powerful feature of C++ that allow controlled access to private and protected
members of a class.

 They improve flexibility
 Enable data sharing
 Support operator overloading

However, they should be used carefully to avoid breaking the principles of encapsulation and data
hiding.

